富士通研究所は、IoT(モノのインターネット)機器などから得られる、振動が激しく人による判別が困難な時系列データに対して、高精度な解析を可能とする新たなDeep Learning技術を発表した。
富士通研究所は2016年2月16日、IoT(モノのインターネット)機器などから得られる、振動が激しく人による判別が困難な時系列データに対して、高精度な解析を可能とする新たなDeep Learning技術を発表した。
Deep Learningは、膨大なデータをコンピュータが自ら学習しながら分析する機械学習技術。人工知能の発展を担う技術の1つとして注目されているが、現状では画像や音声の認識など限られた種類のデータにしか活用されていない。
特に、IoT機器などに搭載されたセンサーから取得される変動の激しい複雑な時系列データは、Deep Learningだけでなく他の機械学習技術でも高精度な分類が困難だという。
今回、富士通研究所では、最先端数学を活用して、そうした複雑な時系列データを扱うことのできるDeep Learning技術を開発した。複雑な現象を分析するカオス理論に基づいて時系列データを図形化し、位相幾何学に基づくデータ分析手法を用いて図形の特徴を独自のベクトル表現へと変換。さらに、画像認識に用いられるDeep Learningの手法である畳み込みニューラルネットワークを新たに設計し、変換されたベクトル表現を分類する。
この新技術を用いて、ウェアラブル機器などに用いられるジャイロセンサーの時系列データを分類したところ、UC Irvine Machine Learning Repositoryのベンチマークテストにおいて、約85%の精度を達成。既存技術に比べ約25%精度が向上した。
同技術により、Deep Learning技術の適用データ範囲が時系列データにまで広がった。新技術を活用することで、製造現場で設備の異常や故障を高精度に検知・予測したり、バイタルデータを分析して医療における診断・治療を支援したりと、さまざまな分野で人工知能による高度化が期待される。
同研究所では今後、時系列データの分類技術の精度をさらに高め、2016年度中の実用化を目指すという。
Copyright © ITmedia, Inc. All Rights Reserved.
豊富なホワイトペーパーの中から、製品・サービス導入の検討に役立つ技術情報や導入事例などを簡単に入手できます。